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Quantitative Finance, Vol. 10, No. 7, August–September 2010, 761–782

Statistical arbitrage in the US equities market

MARCO AVELLANEDA*yz and JEONG-HYUN LEEy

yCourant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA

zFinance Concepts, 49-51 Avenue Victor-Hugo, Paris 75116, France

(Received 1 July 2008; in final form 17 June 2009)

We study model-driven statistical arbitrage in US equities. Trading signals are generated in
two ways: using Principal Component Analysis (PCA) or regressing stock returns on sector
Exchange Traded Funds (ETFs). In both cases, the idiosyncratic returns are modelled as
mean-reverting processes, which leads naturally to ‘contrarian’ strategies. We construct, back-
test and compare market-neutral PCA- and ETF-based strategies applied to the broad
universe of US equities. After accounting for transaction costs, PCA-based strategies have an
average annual Sharpe ratio of 1.44 over the period 1997 to 2007, with stronger performances
prior to 2003. During 2003–2007, the average Sharpe ratio of PCA-based strategies was only
0.9. ETF-based strategies had a Sharpe ratio of 1.1 from 1997 to 2007, experiencing a similar
degradation since 2002. We also propose signals that account for trading volume, observing
significant improvement in performance in the case of ETF-based signals. ETF-strategies with
volume information achieved a Sharpe ratio of 1.51 from 2003 to 2007. The paper also relates
the performance of mean-reversion statistical arbitrage strategies with the stock market cycle.
In particular, we study in detail the performance of the strategies during the liquidity crisis of
the summer of 2007, following Khandani and Lo [Social Science Research Network (SSRN)
working paper, 2007].

Keywords: Alternative investments; Cointegration; Correlation modelling; Quantitative
trading strategies

1. Introduction

The term statistical arbitrage encompasses a variety of

strategies and investment programs. Their common

features are: (i) trading signals are systematic, or rules-

based, as opposed to driven by fundamentals, (ii) the

trading book is market-neutral, in the sense that it has

zero beta with the market, and (iii) the mechanism for

generating excess returns is statistical. The idea is to make

many bets with positive expected returns, taking advan-

tage of diversification across stocks, to produce a low-

volatility investment strategy which is uncorrelated with

the market. Holding periods range from a few seconds to

days, weeks or even longer.
Pairs-trading is widely assumed to be the ‘ancestor’ of

statistical arbitrage. If stocks P and Q are in the same

industry or have similar characteristics (e.g. Exxon

Mobile and Conoco Phillips), one expects the returns

of the two stocks to track each other after controlling

for beta. Accordingly, if Pt and Qt denote the correspond-
ing price time series, then we can model the system as

lnðPt=Pt0 Þ ¼ �ðt� t0Þ þ � lnðQt=Qt0Þ þ Xt ð1Þ

or, in its differential version,

dPt

Pt
¼ � dtþ �

dQt

Qt
þ dXt, ð2Þ

where Xt is a stationary, or mean-reverting, process. This
process will be referred to as the cointegration residual,
or residual, for short, in the rest of the paper. In many
cases of interest, the drift � is small compared to the
fluctuations of Xt and can therefore be neglected. This
means that, after controlling for beta, the long–short
portfolio oscillates near some statistical equilibrium.
The model suggests a contrarian investment strategy in
which we go long 1 dollar of stock P and short � dollars of
stock Q if Xt is small and, conversely, go short P and long
Q if Xt is large. The portfolio is expected to produce a
positive return as valuations converge (see Pole 2007 for
a comprehensive review on statistical arbitrage and*Corresponding author. Email: avellane@CIMS.nyu.edu
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co-integration). The mean-reversion paradigm is typically

associated with market over-reaction: assets are tempora-

rily under- or over-priced with respect to one or several

reference securities (Lo and MacKinlay 1990).
Another possibility is to consider scenarios in which

one of the stocks is expected to out-perform the other

over a significant period of time. In this case the

co-integration residual should not be stationary. This

paper will be principally concerned with mean-reversion,

so we don’t consider such scenarios.
‘Generalized pairs-trading’, or trading groups of stocks

against other groups of stocks, is a natural extension of

pairs-trading. To explain the idea, we consider the sector

of biotechnology stocks. We perform a regression/

cointegration analysis, following (1) or (2), for each

stock in the sector with respect to a benchmark sector

index, e.g. the Biotechnology HOLDR (BBH). The role of

the stock Q would be played by BBH and P would be an

arbitrary stock in the biotechnology sector. The analysis

of the residuals, based of the magnitude of Xt, suggests

typically that some stocks are cheap with respect to the

sector, others expensive and others fairly priced. A

generalized pairs trading book, or statistical arbitrage

book, consists of a collection of ‘pair trades’ of stocks

relative to the Exchange Traded Fund (ETF) (or, more

generally, factors that explain the systematic stock

returns). In some cases, an individual stock may be held

long against a short position in ETF, and in others we

would short the stock and go long the ETF. Due to

netting of long and short positions, we expect that the net

position in ETFs will represent a small fraction of the

total holdings. The trading book will look therefore like

a long/short portfolio of single stocks. This paper is

concerned with the design and performance-evaluation

of such strategies.
The analysis of residuals is our starting point. Signals

will be based on relative-value pricing within a sector or

a group of peers, by decomposing stock returns into

systematic and idiosyncratic components and statistically

modelling the idiosyncratic part. The general decomposi-

tion may look like

dPt

Pt
¼ � dtþ

Xn
j¼1

�jF
ð j Þ
t þ dXt, ð3Þ

where the terms F
ð j Þ
t , j¼ 1, . . . , n, represent returns of

risk-factors associated with the market under considera-

tion. This leads to the interesting question of how to

derive equation (3) in practice. The question also arises in

classical portfolio theory, but in a slightly different way:

there we ask what constitutes a ‘good’ set of risk-factors

from a risk-management point of view. Here, the

emphasis is instead on the residual that remains after

the decomposition is done. The main contribution of our

paper will be to study how different sets of risk-factors

lead to different residuals and hence to different profit-

loss (PNL) for statistical arbitrage strategies.

Previous studies on mean-reversion and contrarian

strategies include Poterba and Summers (1988),
Lehmann (1990), and Lo and MacKinlay (1990). In a

recent paper, Khandani and Lo (2007) discuss the

performance of the Lo–MacKinlay contrarian strategies

in the context of the liquidity crisis of 2007 (see also
references therein). The latter strategies have several

common features with the ones developed in this paper.

In Khandani and Lo (2007), market-neutrality is enforced

by ranking stock returns by quantiles and trading ‘winners-
versus-losers’, in a dollar-neutral fashion. Here, we use

risk-factors to extract trading signals, i.e. to detect over-

and under-performers. Our trading frequency is variable

whereas Khandani–Lo trade at fixed time intervals. On the

parametric side, Poterba and Summers (1988) study mean-
reversion using auto-regressive models in the context of

international equity markets. The models of this paper

differ from the latter mostly in that we immunize stocks

against market factors, i.e. we consider mean-reversion of
residuals (relative prices) and not of the prices themselves.

The paper is organized as follows: in section 2, we study

market-neutrality using two different approaches. The

first method consists in extracting risk-factors using

Principal Component Analysis (PCA) (Jolliffe 2002).
The second method uses industry-sector ETFs as proxies

for risk factors. Following other authors, we show that

PCA of the correlation matrix for the broad equity

market in the US gives rise to risk-factors that have
economic significance because they can be interpreted as

long–short portfolios of industry sectors. However, the

stocks that contribute the most to a particular factor are

not necessarily the largest capitalization stocks in a given
sector. This suggests that PCA-based risk factors may not

be as biased towards large-capitalization stocks as ETFs,

as the latter are generally capitalization-weighted. We also

observe that the variance explained by a fixed number of
PCA eigenvectors varies significantly across time, which

leads us to conjecture that the number of explanatory

factors needed to describe stock returns (to separate

systematic returns from residuals) is variable and that this

variability is linked with the investment cycle, or the
changes in the risk-premium for investing in the equity

market.y This might explain some of the differences that

we found in performance between the PCA and ETF

methods.
In sections 3 and 4, we construct the trading signals.

This involves the statistical estimation of the residual

process for each stock at the close of each trading day,

using 60 days of historical data prior to that date.

Estimation is always done looking back 60 days from the
trade date, thus simulating decisions which might take

place in real trading. The trading signals correspond to

significant deviations of the residual process from its

estimated mean. Using daily end-of-day (EOD) data, we
perform a calculation of daily trading signals, going back

to 1996 in the case of PCA strategies and to 2002 in the

case of ETF strategies, across the universe of stocks with

ySee Scherer and Avellaneda (2002) for similar observations for Latin American debt securities in the 1990s.
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market-capitalization of more than 1 billion USD at the
trade date. The condition that the company must have a
given capitalization at the trade date (as opposed to
at the time when the paper was written), avoids survivor-
ship bias.

Estimation and trading rules are kept simple to avoid
data-mining. For each stock, the estimation of the
residual process is done using a 60-day trailing window
because this corresponds roughly to one earnings cycle.
The length of the window is not changed from one stock
to another. We select as entry point for trading any
residual that deviates by 1.25 standard deviations from
equilibrium, and we exit trades if the residual is less than
0.5 standard deviations from equilibrium, uniformly
across all stocks.

In section 5 we back-test several strategies which use
different sets of factors to generate residuals, namely:
(i) synthetic ETFs based on capitalization-weighted
indices,y (ii) actual ETFs, (iii) a fixed number of factors
generated by PCA, (iv) a variable number of factors
generated by PCA. Due to the mechanism described above
used to generate trading signals, the simulation is always
out-of-sample, in the sense that the estimation of the
residual process at time t uses information available only
for the 60 days prior to this time. In all trades, we assume
a slippage/transaction cost of 0.05% or 5 basis points per
trade (a round-trip transaction cost of 10 basis points).

In section 6, we consider a modification of the strategy
in which signals are estimated in ‘trading time’ as opposed
to calendar time. In the statistical analysis, using trading
time on EOD signals is effectively equivalent to multi-
plying daily returns by a factor which is inversely
proportional to the trading volume for the past day.
This modification accentuates (i.e. tends to favour)
contrarian price signals taking place on low volume and
mitigates (i.e. tends not to favour) contrarian price signals
which take place on high volume. It is as if we ‘believe
more’ a print that occurs on high volume and are less
ready to bet against it. Back-testing the statistical
arbitrage strategies using trading-time signals leads to
improvements in most strategies, suggesting that volume
information is valuable in the context of mean-reversion
strategies, even at the EOD sampling frequency and not
only for intra-day trading.

In section 7, we discuss the performance of statistical
arbitrage in 2007, and particularly around the inception
of the liquidity crisis of August 2007. We compare the
performances of the mean-reversion strategies with the
ones studied in the recent work of Khandani and
Lo (2007). Conclusions are presented in section 8.

2. A quantitative view of risk-factors and

market-neutrality

Let us denote by fRig
N
i¼1 the returns of the different stocks

in the trading universe over an arbitrary one-day period

(from close to close). Let F represent the return of the

‘market portfolio’ over the same period (e.g. the return on

a capitalization-weighted index, such as the S&P 500).

We can write, for each stock in the universe,

Ri ¼ �iFþ ~Ri, ð4Þ

which is a simple regression model decomposing stock

returns into a systematic component �iF and an (uncorre-

lated) idiosyncratic component ~Ri. Alternatively, we

consider multi-factor models of the form

Ri ¼
Xm
j¼1

�ijFj þ ~Ri: ð5Þ

Here there are m factors, which can be thought of as the

returns of ‘benchmark’ portfolios representing systematic

factors. A trading portfolio is said to be market-neutral if

the dollar amounts fQig
N
i¼1 invested in each of the stocks

are such that

�j ¼
XN
i¼1

�ijQi ¼ 0, j ¼ 1, 2, . . . ,m: ð6Þ

The coefficients �j correspond to the portfolio betas, or

projections of the portfolio returns on the different

factors. A market-neutral portfolio has vanishing portfo-

lio betas; it is uncorrelated with the market portfolio or

factors that drive the market returns. It follows that the

portfolio returns satisfy

XN
i¼1

QiRi ¼
XN
i¼1

Qi

Xm
j¼1

�ijFj

" #
þ
XN
i¼1

Qi
~Ri

¼
Xm
j¼1

XN
i¼1

�ijQi

" #
Fj þ

XN
i¼1

Qi
~Ri ¼

XN
i¼1

Qi
~Ri: ð7Þ

Thus, a market-neutral portfolio is affected only by

idiosyncratic returns. We shall see below that, in G8

economies, stock returns are explained by approximately

m¼ 15 factors (or between 10 and 20 factors), and

that the systematic component of stock returns explains

approximately 50% of the variance (see Laloux et al. 2000

and Plerou et al. 2002). The question is how to define

‘factors’.

2.1. The PCA approach

A first approach for extracting factors from data is to

use principal components analysis (Jolliffe 2002). This

approach uses historical share-price data on a cross-

section of N stocks going back M days in history. For

simplicity of exposition, the cross-section is assumed to be

identical to the investment universe, although this need

not be the case in practice.y Let us represent the stocks

return data, on any given date t0, going back Mþ 1 days

ySynthetic ETFs are capitalization-weighted sector indexes formed with the stocks of each industry that are present in the trading
universe at the time the signal in calculated. We used synthetic ETFs because most sector ETFs were launched only after 2002.
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as a matrix

Rik ¼
Siðt0�ðk�1Þ�tÞ �Siðt0�k�tÞ

Siðt0�k�tÞ
, k¼ 1, . . . ,M, i¼ 1, . . . ,N,

where Sit is the price of stock i at time t adjusted for

dividends and �t¼ 1/252. Since some stocks are more

volatile than others, it is convenient to work with

standardized returns

Yik ¼
Rik � Ri

�i
,

where

Ri ¼
1

M

XM
k¼1

Rik

and

�2i ¼
1

M� 1

XM
k¼1

ðRik � RiÞ
2:

The empirical correlation matrix of the data is defined by

�ij ¼
1

M� 1

XM
k¼1

YikYjk, ð8Þ

which is symmetric and non-negative definite. Notice

that, for any index i, we have

�ii ¼
1

M� 1

XM
k¼1

ðYikÞ
2
¼

1

M� 1

PM
k¼1ðRik � RiÞ

2

�2i
¼ 1:

The dimensions of � are typically 500 by 500, or 1000

by 1000, but the data is small relative to the number of

parameters that need to be estimated. In fact, if we

consider daily returns, we are faced with the problem that

very long estimation windows M�N don’t make sense

because they take into account the distant past, which is

economically irrelevant. On the other hand, if we just

consider the behaviour of the market over the past year,

for example, then we are faced with the fact that there are

considerably more entries in the correlation matrix than

data points. In this paper, we always use an estimation

window for the correlation matrix of one-year (252

trading days) prior to the trading date.
The commonly used solution to extract meaningful

information from the data is to model the correlation

matrix.z We consider the eigenvectors and eigenvalues of

the empirical correlation matrix and rank the eigenvalues

in decreasing order:

N � �1 > �2 � �3 � � � � � �N � 0:

We denote the corresponding eigenvectors by

v ð j Þ ¼ v
ð j Þ
1 , . . . , v

ð j Þ
N

� �
, j ¼ 1, . . . ,N:

A cursory analysis of the eigenvalues shows that the
spectrum contains a few large eigenvalues which are
detached from the rest of the spectrum (see figure 1). We
can also look at the density of states

Dðx, yÞ ¼
f# of eigenvalues between x and yg

N

(see figure 2). For intervals (x, y) near zero, the function
D(x, y) corresponds to the ‘bulk spectrum’ or ‘noise
spectrum’ of the correlation matrix. The eigenvalues at
the top of the spectrum which are isolated from the bulk
spectrum are obviously significant. The problem that is
immediately evident by looking at figures 1 and 2 is that
there are fewer ‘detached’ eigenvalues than industry
sectors. Therefore, we expect that the boundary between
‘significant’ and ‘noise’ eigenvalues to be somewhat
blurred and to correspond to being at the edge of the
‘bulk spectrum’. This leads to two possibilities: (a) we take
into account a fixed number of eigenvalues to extract
the factors (assuming a number close to the number of
industry sectors) or (b) we take a variable number of
eigenvectors, depending on the estimation date, in such a
way that a sum of the retained eigenvalues exceeds a given
percentage of the trace of the correlation matrix. The
latter condition is equivalent to saying that the truncation
explains a given percentage of the total variance of the
system.

Let �1, . . . , �m, m5N be the significant eigenvalues
in the above sense. For each index j, we consider a the
corresponding ‘eigenportfolio’, which is such that the
respective amounts invested in each of the stocks are
defined as

Q
ð j Þ
i ¼ v

ð j Þ
i =�i:

The eigenportfolio returns are therefore

Fjk ¼
XN
i¼1

v
ð j Þ
i

�i
Rik, j ¼ 1, 2, . . . ,m: ð9Þ

It is easy for the reader to check that the eigenportfolio
returns are uncorrelated in the sense that the empirical
correlation of Fj and Fj 0 vanishes for j 6¼ j 0. The factors in
the PCA approach are the eigenportfolio returns.

Each stock return in the investment universe can be
decomposed into its projection on the m factors and a
residual, as in equation (4). Thus, the PCA approach
delivers a natural set of risk-factors that can be used to
decompose our returns. It is not difficult to verify that this
approach corresponds to modelling the correlation matrix
of stock returns as a sum of a rank-m matrix correspond-
ing to the significant spectrum and a diagonal matrix of
full rank,

�ij ¼
Xm
k¼0

�kv
ðkÞ
i v

ðkÞ
j þ �

2
ii�ij;

yFor instance, the analysis can be restricted to the members of the S&P500 index in the US, the Eurostoxx 350 in Europe, etc.
zWe refer the reader to Laloux et al. (2000) and Plerou et al. (2002), who studied the correlation matrix of the top 500 stocks in the
US in this context.

764 M. Avellaneda and J.-H. Lee



where �ij is the Kronecker delta and �2ii is given by

�2ii ¼ 1�
Xm
k¼0

�kv
ðkÞ
i v

ðkÞ
i

so that �ii ¼ 1. This means that we keep only the
significant eigenvalues/eigenvectors of the correlation
matrix and add a diagonal ‘noise’ matrix for the purposes
of conserving the total variance of the system.

2.2. Interpretation of the eigenvectors/eigenportfolios

As pointed out by several authors (see, for instance,
Laloux et al. 2000), the dominant eigenvector is

associated with the ‘market portfolio’, in the sense that
all the coefficients v

ð1Þ
i ; i¼ 1, 2, . . . ,N, are positive. Thus,

the eigenportfolio has positive weights Q
ð1Þ
i ¼ v

ð1Þ
i =�i. We

notice that these weights are inversely proportional to
the stock’s volatility. This weighting is consistent with the
capitalization-weighting, since larger capitalization com-
panies tend to have smaller volatilities. The two portfolios
are not identical but are good proxies for each other,y as
shown in figure 3.

To interpret the other eigenvectors, we observe that (i)
the remaining eigenvectors must have components that
are negative, in order to be orthogonal to v(1); (ii) given
that there is no natural order in the stock universe, the
‘shape analysis’ that is used to interpret the PCA of

Figure 1. Top 50 eigenvalues of the correlation matrix of market returns computed on 1 May 2007 estimated using a one-year
window and a universe of 1417 stocks (see table 3). (Eigenvalues are measured as percentage of explained variance.)

Figure 2. The density of states for 1 May 2007 estimated using a one-year window, corresponding to the same data used to generate
figure 1. Notice that there are some ‘detached eigenvalues’, and a ‘bulk spectrum’. The relevant eigenvalues include the detached
eigenvalues as well as a eigenvalues in the edge of the bulk spectrum.

yThe positivity of the coefficients of the first eigenvector of the correlation matrix in the case when all assets have non-negative
correlation follows from Krein’s theorem. In practice, the presence of commodity stocks and mining companies implies that there
are always a few negatively correlated stock pairs. In particular, this explains why there are a few negative weights in the principal
eigenportfolio in figure 4.

Statistical arbitrage in the US equities market 765



interest-rate curves (Litterman and Scheinkman 1991) or

equity volatility surfaces (Cont and Da Fonseca 2002)

does not apply here. The analysis that we use here is

inspired by Scherer and Avellaneda (2002), who analysed

the correlation of sovereign bond yields across different

Latin American issuers (see also Plerou et al. 2002, who

made similar observations). We rank the coefficients

of the eigenvectors in decreasing order:

v ð2Þn1
� v ð2Þn2

� � � � � v ð2ÞnN
,

the sequence ni representing a re-labelling of the compa-

nies. In this new ordering, we notice that the ‘neighbours’

Figure 3. Comparative evolution of the principal eigenportfolio and the capitalization-weighted portfolio from May 2006 to
April 2007. Both portfolios exhibit similar behaviour.

Figure 4. First eigenvector sorted by coefficient size. The x-axis shows the ETF corresponding to the industry sector of each stock.

Table 1. The top 10 stocks and bottom 10 stocks in second
eigenvector.

Top 10 stocks Bottom 10 stocks
energy, oil and gas Real estate, financials, airlines

Suncor Energy Inc. American Airlines
Quicksilver Res. United Airlines
XTO Energy Marshall & Isley
Unit Corp. Fifth Third Bancorp
Range Resources BBT Corp.
Apache Corp. Continental Airlines
Schlumberger M & T Bank
Denbury Resources Inc. Colgate-Palmolive Company
Marathon Oil Corp. Target Corporation
Cabot Oil &

Gas Corporation
Alaska Air Group, Inc.

Table 2. The top 10 stocks and bottom 10 stocks in third
eigenvector.

Top 10 stocks Bottom 10 stocks
Utility Semiconductor

Energy Corp. Arkansas Best Corp.
FPL Group, Inc. National Semiconductor Corp.
DTE Energy Company Lam Research Corp.
Pinnacle West Capital Corp. Cymer, Inc.
The Southern Company Intersil Corp.
Consolidated Edison, Inc. KLA-Tencor Corp.
Allegheny Energy, Inc. Fairchild Semiconductor

International
Progress Energy, Inc. Broadcom Corp.
PG&E Corporation Cellcom Israel Ltd.
FirstEnergy Corp. Leggett & Platt, Inc.

766 M. Avellaneda and J.-H. Lee



of a particular company tend to be in the same industry
group (see tables 1 and 2 and figures 4, 5 and 6). This
property, which we call coherence, holds true for v(2) and
for other high-ranking eigenvectors. As we descend in the
spectrum towards the noise eigenvectors, the property that
nearby coefficients correspond to firms in the same
industry is less true and coherence will not hold for
eigenvectors of the noise spectrum (almost by definition!).
The eigenportfolios can therefore be interpreted as long–
short portfolios at the level of industries or sectors.

2.3. The ETF approach: using the industries

Another method for extracting residuals consists in using
the returns of sector ETFs as factors. Table 3 shows a
sample of industry sectors’ numbers of stocks of
companies with capitalization more than US$1 billion
at the beginning of January 2007, classified by sector. It
gives an idea of the dimensions of the trading universe
and the distribution of stocks corresponding to each
industry sector. We also include, for each industry, the
ETF that can be used as a risk-factor for the stocks in
the sector for the simplified model (11).

Unlike the case of eigenportfolios, which are uncorre-
lated by construction, ETF returns are correlated. This
can lead to redundancies in the factor decomposition:
strongly correlated ETFs sometimes give rise to large
factor loadings with opposing signs for stocks that belong
to or are strongly correlated with different ETFs. There
are several approaches that can be used to remedy this:
one is a robust version of multiple regression aiming at
‘sparse’ representations. For example, the matching
pursuit algorithm (Davis et al. 1997) which favours
sparse representations is preferable to a full multiple
regression. Another class of regression methods known as
ridge regression would achieve a similar goal (see, for
instance, Jolliffe 2002).

In this paper we use a simple approach. We associate to
each stock a single sector ETF (following the partition

of the market shown in table 3) and perform a regression

of the stock returns on the corresponding ETF

returns, i.e.

Ri ¼ �RETFi
þ ~Ri,

where ETFi is associated with stock i.

3. A relative-value model for equity valuation

We propose a quantitative approach to stock valuation

based on its relative performance within industry sector

ETFs or, alternatively, with respect to the constructed
PCA factors. In section 4, we present a modification of

this approach which takes into account the trading

volume in the stocks, within a similar framework. Our

investment model is purely based on price and volume
data, although in principle it could be extended to include

fundamental factors, such changes in analysts’ recom-

mendations, earnings momentum, and other quantifiable

factors.
We shall use continuous-time notation and denote

stock prices by Si (t), . . . ,SN(t), where t is time measured

in years from some arbitrary starting date. Based on the

multi-factor models introduced in the previous section, we

assume that stock returns satisfy the system of stochastic
differential equations

dSiðtÞ

SiðtÞ
¼ �idtþ

XN
j¼1

�ij
dIjðtÞ

IjðtÞ
þ dXiðtÞ, ð10Þ

where the term

XN
j¼1

�ij
dIjðtÞ

IjðtÞ

represents the systematic component of returns (driven

by the returns of the eigenportfolios or the ETFs). The

coefficients �ij are the corresponding factor loadings.

Table 3. Trading universe on 1 January 2007, broken down by sector. The market is therefore partitioned into 15 sectors and each
stock is associated with an ETF.

Market cap unit: 1M/usd

Sector ETF Num of stocks Average Max Min

Internet HHH 22 10,350 104,500 1,047
Real Estate IYR 87 4,789 47,030 1,059
Transportation IYT 46 4,575 49,910 1,089
Oil Exploration OIH 42 7,059 71,660 1,010
Regional Banks RKH 69 23,080 271,500 1,037
Retail RTH 60 13,290 198,200 1,022
Semiconductors SMH 55 7,303 117,300 1,033
Utility UTH 75 7,320 41,890 1,049
Energy XLE 75 17,800 432,200 1,035
Financial XLF 210 9,960 187,600 1,000
Industrial XU 141 10,770 391,400 1,034
Technology XLK 158 12,750 293,500 1,008
Consumer Staples XLP 61 17,730 204,500 1,016
Healthcare XIV 109 14,390 192,500 1,025
Consumer discretionary XLY 207 8,204 104,500 1,007
Total 1417 11,291 432,200 1,000

January, 2007
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In the case of ETF factors, we work with the model

dSiðtÞ

SiðtÞ
¼ �i dtþ �i

dIðtÞ

IðtÞ
þ dXiðtÞ, ð11Þ

where I(t) is the ETF corresponding to the stock under

consideration.y
In both cases, the idiosyncratic component of the

return is
d ~XiðtÞ ¼ �i dtþ dXiðtÞ:

Here, �i represents the drift of the idiosyncratic compo-

nent, i.e. �i dt is the excess rate of return of the stock in

relation to the market or industry sector over the relevant

period. The term dXi (t) is assumed to be the increment

of a stationary stochastic process which models price

fluctuations which are not driven by the systematic

factors (PCA or ETF).
Based on these assumptions, we introduce a simple

parametric model for Xi (t) which can be estimated easily,

namely the Ornstein–Uhlenbeck process:

dXiðtÞ ¼ 	i mi � XiðtÞð Þdtþ �i dWiðtÞ, 	i 4 0: ð12Þ

This process is stationary and auto-regressive with lag 1

(AR-1 model).z In particular, the increment dXi (t) has

unconditional mean equal to zero and conditional mean

equal to

EfdXiðtÞjXiðsÞ, s � tg ¼ 	iðmi � XiðtÞÞdt:

The conditional mean, or forecast of expected daily

returns of the residual process, is positive or negative

according to the sign of mi�Xi (t).
The parameters of the stochastic differential equation,

�i, 	i, mi and �i, are specific to each stock. They are

assumed de facto to vary slowly in relation to the Brownian

motion increments dWi (t), in the time-window of interest.

In the simulations, we estimate the residual processes

for each stock on a window of length 60 days,

assuming implicitly that the parameters are constant over

the window.We accept this hypothesis on stocks for which

the speed of mean-reversion (the estimate of 	) is

sufficiently high and reject it for stocks having a slow

Figure 5. Second eigenvector sorted by coefficient size. Labels as in figure 4.

Figure 6. Third eigenvector sorted by coefficient size. Labels as in figure 4.

yIn other words, we analyse a ‘pair-trade’ between each stock and its assigned ETF.
zAmong the myriad of mean-reverting processes, we choose the simplest one to model residuals. We encourage the reader interested
in practical implementations to experiment with other models, as we have in the course of this research.
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speed of mean-reversion. Details on how to estimate the

model are given in the next section and in Appendix A.
It follows from (12) that

Xiðt0 þ�tÞ ¼ e�	i�tXiðt0Þ þ 1� e�	i�t
� �

mi

þ �i

Z t0þ�t

t0

e�	iðt0þ�t�sÞdWiðsÞ: ð13Þ

Letting �t tend to infinity, we see that the equilibrium

probability distribution for the processXi (t) is normal with

EfXiðtÞg ¼ mi and VarfXiðtÞg ¼
�2i
2	i

: ð14Þ

According to equation (10), an investment in a market-

neutral long–short portfolio in which the agent is long $1

in the stock and short �ij dollars in the jth factor (or the

ETF, in the case of the ETF framework) has an expected

one-day return

�i dtþ 	i mi � XiðtÞð Þdt:

The second term corresponds to the model’s prediction

for the return based on the position of the stationary

process Xi (t): it forecasts a negative return if Xi (t) is

sufficiently high and a positive return if Xi (t) is

sufficiently low.
The parameter 	i is called the speed of mean-

reversion and


i ¼ 1=	i

represents the characteristic time-scale for mean rever-
sion. If 	� 1 the stock reverts quickly to its mean and
the effect of the drift is negligible. In our strategies, and
to be consistent with the estimation procedure that uses
constant parameters, we are interested in stocks with fast
mean-reversion, i.e. such that


i � T1:

4. Signal generation

Based on this simple model, we defined several trading
signals. We considered an estimation window of 60
business days, i.e. T1¼ 60/252. We selected stocks
with mean-reversion times less than 1/2 period
(	4252/30¼ 8.4). Typical descriptive statistics for signal
estimation are presented in table 5. For the details of the
estimation of the Ornstein–Uhlenbeck process and more
statistical details on signal generation, see Appendix A.

4.1. Pure mean-reversion

We focus only on the process Xi (t), neglecting the drift �i.
We know that the equilibrium variance is

�eq, i ¼
�iffiffiffiffiffiffi
2	i
p ¼ �i

ffiffiffiffi

i
2

r
:

Accordingly, we define the dimensionless variable

si ¼
XiðtÞ �mi

�eq;i
: ð15Þ

Table 4. Sharpe ratios for the strategy using synthetic ETFs as factors: 1996–2007. The Sharpe ratio is defined as (�� r)/�, where �,
r, � are the annualized return, interest rate and standard deviation of the PNL. The best years are 1996–2002. Sector Sharpe ratios

assume beta-neutrality with respect to the S&P 500 index.

HHH IYR IYT OIH RKH RTH SMH UTH XLE XLF XLI XLK XLP XLV XLY Porfolio

1996 1.7 1.7 (1.2) 1.0 0.8 (0.6) 0.6 1.4 0.6 2.3 0.5 1.5 (0.5) 1.1 0.4 1.7
1997 0.1 1.5 (0.0) 2.5 1.2 1.1 2.2 1.1 (1.0) 2.3 0.6 1.1 0.4 1.5 2.9 3.6
1998 0.9 (0.5) (0.5) 0.8 2.5 1.8 2.4 2.0 1.1 2.1 0.8 3.0 0.1 (0.1) 2.8 3.4
1999 (1.0) (1.3) 1.5 (1.3) (0.7) 0.3 1.2 (1.2) 1.4 1.9 1.1 1.9 (1.1) 0.1 0.6 0.8
2000 (0.4) 1.0 1.2 (0.6) 2.1 0.1 (0.7) 0.7 1.0 0.2 (0.8) 0.9 0.1 (0.5) (1.1) 0.3
2001 (0.9) 2.8 0.7 0.6 2.7 1.5 (0.9) 0.6 1.6 0.1 1.9 1.9 0.6 1.4 3.3 2.9
2002 1.9 1.5 (0.1) 1.0 2.1 0.7 (0.5) (1.1) (1.3) 1.6 0.8 2.0 1.3 0.0 1.8 2.0
2003 0.5 0.0 (0.4) (0.4) 2.6 1.3 (1.3) (0.9) 0.1 (0.4) (0.8) 2.5 (0.6) (1.0) (1.1) 0.1
2004 0.7 0.1 1.2 0.3 1.3 (0.4) 0.1 (1.1) 0.6 0.1 1.1 1.2 (0.0) (0.8) (0.0) 0.8
2005 0.1 (2.1) (0.3) (0.8) (0.1) 0.2 0.5 (2.1) 0.0 (0.8) (0.1) 1.0 (1.1) (0.6) (0.5) (1.3)
2006 (0.7) (1.8) (0.1) (0.3) 1.6 (0.4) (0.2) 0.3 (0.7) (1.1) 0.9 0.7 (0.9) (1.0) 1.1 (0.5)
2007 2.1 (2.1) 0.6 (1.4) (1.1) (0.9) 0.1 (1.1) (0.8) (1.0) 1.0 (0.0) 0.0 (0.6) 1.1 (0.5)
Since inception 0.4 0.1 0.2 0.1 1.2 0.4 0.3 (0.1) 0.2 0.6 0.6 1.5 (0.2) (0.0) 0.9 1.1

Table 5. Sharpe ratios for actual 15 ETFs as factors: 2002–2007. Industry Sharpe ratios assume beta-neutrality with respect to the
corresponding ETF. We observe, for the purpose of comparison, that the average Sharpe ratio from 2003 to 2007 was 0.6. Sharpe

ratios above 1.0 where obtained in 2002 and 2004.

HHH IYR IYT OIH RKH RTH SMH UTH XLE XLF XLI XLK XLP XLV XLY Porfolio

2002 1.9 2.1 1.4 0.6 2.4 1.5 (0.7) (0.2) (0.2) 1.8 0.7 1.5 1.8 (0.1) 2.4 2.7
2003 (0.2) 0.8 (0.3) (0.5) 1.4 1.1 (1.0) (0.1) 0.5 0.6 (0.6) 2.6 0.3 (0.4) (0.4) 0.8
2004 0.9 1.6 (0.7) 0.4 0.5 0.1 0.2 (0.4) 0.6 0.6 1.4 1.9 0.5 (0.6) 0.3 1.6
2005 0.3 (1.5) 0.8 (0.6) 0.3 0.5 0.5 (1.1) (0.1) 0.9 0.6 1.3 (0.7) 0.2 0.0 0.1
2006 (0.2) (1.3) 0.0 (0.2) 0.9 (0.1) 0.5 1.7 (0.5) (0.6) 1.7 1.7 (0.0) (0.4) 2.0 0.7
2007 (0.4) (0.3) 0.0 (1.3) (1.2) (0.7) 0.9 (0.7) (1.0) (0.6) 1.1 0.6 0.4 (0.5) 1.3 (0.2)
Since inception 0.4 0.2 0.2 (0.3) 0.7 0.4 0.1 (0.1) (0.1) 0.5 0.8 1.6 0.4 (0.3) 0.9 0.9
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We call this variable the s-score.y See figure 7 for a graph

showing the evolution of the s-score for residuals of JPM

against the Financial SPDR, XLF. The s-score measures

the distance to equilibrium of the cointegrated residual in

units standard deviations, i.e. how far away a given stock

is from the theoretical equilibrium value associated with

our model.
Our basic trading signal based on mean-reversion is

buy to open if si 5�sbo
sell to open if si 4þsso

close short position ifsi 5þsbc
close long position si 4�ssc

ð16Þ

where the cutoff values are determined empirically.

Entering a trade, e.g. buy to open, means buying one

dollar of the corresponding stock and selling �i dollars of
its sector ETF or, in the case of using multiple factors,

�i1 dollars of ETF #1, �i2 dollars of ETF #2, . . . ,�im
dollars of ETF #m. Similarly, closing a long position

means selling stock and buying ETFs.
Since we expressed all quantities in dimensionless

variables, we expect the cutoffs sbo, sbo, sbc, ssc to be

valid across the different stocks. We selected the cutoffs

empirically, based on simulating strategies from 2000 to

2004 in the case of ETF factors. Based on this analysis,

we found that a good choice of cutoffs is

sbo ¼ sso ¼ 1:25

sbc ¼ 0.75 and ssc ¼ 0:50:

Thus, we enter opening trades when the s-score exceeds

1.25 in absolute value. We close long trades when the

s-score reaches �0.50. Closing short trades sooner, at

s¼ 0.75, gives slightly better results than 0.50 in the

training period of 2000–2002, so we use this slightly

asymmetric rule in back-testing.

The rationale for opening trades only when the s-score
si is far from equilibrium is to trade only when we think
that we detected an anomalous excursion of the
co-integration residual. We then need to consider when
we close trades. Closing trades when the s-score is near
zero also makes sense, since we expect most stocks to be
near equilibrium most of the time. Thus, our trading rule
detects stocks with large ‘excursions’ and trades assuming
these excursions will revert to the mean in a period of the
order of the mean-reversion time 
i.

4.2. Mean-reversion with drift

In the previous section, the presence of the drift � was
ignored. That is, we assumed that the drift was
statistically insignificant in comparison with the ampli-
tude of excursions �eq ¼ �=

ffiffiffiffiffi
2	
p

. In this section, we show
how to incorporate the drift. This leads to a modified
s-score.

We consider the conditional expectation of the residual
return over a period of time dt, namely,

�i dtþ 	iðmi � XiðtÞÞdt ¼ 	i
�i
	i
þmi � XiðtÞ

� �
dt

¼ 	i
�i
	i
� �eq,i si

� �
dt:

This suggests that the dimensionless decision variable is
the ‘modified s-score’

smod, i ¼ si �
�i

	i�eq,i
¼ si �

�i
i
�eq,i

: ð17Þ

To make contact with the analysis of the pure mean-
reversion strategy, consider for example the case of
shorting stock. In the previous framework, we short
stock if the s-score is large enough. The modified s-score
is larger if �i is negative, and smaller if �i is positive.
Therefore, it will be harder to generate a short signal if we

Figure 7. Evolution of the s-score of JPM (versus XLF) from January 2006 to December 2007.

ySee Appendix A for practical details on estimating the s-score.
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think that the residual has an upward drift and easier to

short if we think that the residual has a downward drift.

If the s-score is zero, the signal reduces to buying when

the drift is high enough and selling when the drift is low.

Since the drift can be interpreted as the slope of a 60-day

moving average, we have therefore a ‘built-in’ momentum

strategy in this second signal. A calibration exercise using

the training period 2000–2004 showed that the cutoffs

defined in the previous strategy are also acceptable for

this one.
We observed empirically, through the calculation of

signals, that the drift � has values of the order of 15 basis

points, the average expected reversion time is 7 days, and

the equilibrium volatility of residuals is of the order of 300

bps. The expected average shift for the modified s-score is

of the order of 0.15� 7/300	 0.3. In back-testing simula-

tions, the effect of incorporating a drift in these time-

scales of a few days is minor. Thus, for the sake of brevity,

we do not present back-testing results with the modified

s-scores.
In essence, we claim that the residual process has no

significant drift, or at least that trading based on the

simple constant drift � estimated from the model does not

improve trading performance over assuming that �¼ 0.

We could say that, in aggregate, stock returns have

negligible momentum after controlling for industry/size

factors, on the trading scale of interest.

5. Back-testing results

The back-testing experiments consist in running the

signals through historical data, simulating trades in all

the stocks in the universe according to the signals in (16).

Estimation of parameters (betas, residuals) and signal

evaluations are performed daily. Estimation of the

parameters sometimes leads to values of 	i58.4. When 	i
crosses this threshold, we reject the model and (i) do not

open trades or (ii) close open trades.
We assume that all trades are done at the closing price

of that day. As mentioned previously, we assume a round-

trip transaction cost per trade of 10 basis points, to

incorporate an estimate of price slippage and other costs

as a single friction coefficient.
Let Et represent the portfolio equity at time t. The basic

PNL equation for the strategy has the following form:

Etþ�t ¼ Et þ Etr�tþ
XN
i¼1

QitRit �
XN
i¼1

Qit

 !
r�t

þ
XN
i¼1

QitDit=Sit �
XN
i¼1

jQiðtþ�tÞ �Qitj�,

Qit ¼ Et�t,

where Qit represents the investment in stock i at time t,
Rit is the stock return from corresponding to the period
(t, tþ�t), r represents the interest rate (assuming, for
simplicity, no spread between lending and borrowing
rates), �t¼ 1/252, Dit is the dividend payable to holders
of stock i over the period (t, tþ�t) (when t¼ ex-dividend
date), Sit is the price of stock i at time t, and �¼ 0.0005
is the slippage term alluded to above. The last line in the
equation states that the money invested in stock i is
proportional to the total equity in the portfolio. The
proportionality factor, �t, is stock-independent and
chosen so that the portfolio has a desired level of leverage
on average.

For example, if we expect to have 100 stocks long and
100 short and we wish to have a ‘2þ 2’ leverage, then
�t¼ 2/100.y Another way to think of �t is as the
maximum fraction of the equity that can be invested in
any given stock.z The choice of 2þ 2 leverage was made
to target a volatility of approximately 10% by back-
testing in the period 2002–2004. Of course, the choice of
leverage does not affect the Sharpe ratio and other choices
would give comparable results after standardization
(Khandani and Lo 2007 run a ‘1/2þ 1/2’ contrarian
strategy over a different, broader, stock universe).

Given the discrete nature of the signals, the investment
strategy that we propose is ‘bang–bang’: there is no
continuous trading. Instead, the full amount is invested
on the stock once the signal is active (buy-to-open, short-
to-open) and the position is unwound when the s-score
indicates a closing signal. This all-or-nothing strategy,
which might seem inefficient at first glance, turns out to
outperform making continuous portfolio adjustments,
probably due to model mis-specification.

5.1. Synthetic ETFs as factors

The first set of experiments was done using 15 synthetic
capitalization-weighted industry-sector indices as risk-
factors (see table 3). The reason for using synthetic
ETFs was that most sector ETFs were launched after
2000. In order to be able to back-test strategies going
back to 1996, when most ETFs did not exist, and to
compare the strategies with PCA, we decided to construct
capitalization-weighted sector indices and to construct
residuals based on these indices.

A series of daily returns for a synthetic index is
calculated for each sector and recorded for the 60 days
preceding the estimation date. We then perform a
regression of the stock returns on the returns of the
associated sector index and extract the corresponding
residual series and trading signals.

To ensure market-neutrality, we added to the portfolio
an S&P 500 index hedge using the SPY, which was
adjusted daily and kept the overall portfolio beta-neutral.
In other words, due to the fact that the synthetic ETFs are

y2þ 2 leverage means 2 dollars long and 2 dollars short per dollar of equity in the portfolio. In practice, �t is adjusted only for new
positions, so as not to incur transaction costs for stock which are already held in the portfolio.
zOther refinements that can be made have to do with using different leverage according to the company’s market capitalization or
choosing a sector-dependent leverage that is inversely proportional to the average volatility of the sector.
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not traded instruments, we trade the stocks according to

the signal and buy or sell the S&P 500 Index ETF in the

appropriate amount so as to be beta-neutral.
Since we expect that, on average, stocks are correctly

priced, we experimented with adjusting the mean of the

OU processes exogenously. We introduced the adjusted

means for the residuals

mi ¼ mi �
1

N

XN
j¼1

mj, i ¼ 1, 2, . . . ,N: ð18Þ

This modification has the effect of removing ‘model bias’;

it expresses that we expect that on average the mean of the

residual is zero. We obtained consistently better results in

back-testing when using mi instead of mi. Therefore, we

adopted this centring approach in all the simulations

(synthetic ETFs, ETFs and PCA).

The results of back-testing with synthetic ETFs are
shown in figures 8 and 9, and in table 4.

5.2. Actual ETFs

Back-testing with actual ETFs was possible only from
2002 onward, due to the fact that many ETFs did not
exist before. We back-tested the strategy going back to
2002, using regression on the ETF assigned to each stock
to generate residuals. The results are displayed on figure 9
and table 5.

The simulations suggest that using actual ETFs
improves performance considerably in relation to syn-
thetic ETFs. A possible explanation for this improvement
is that ETFs are traded instruments, whereas the synthetic
ETFs are not, thus providing better price information.
Another possible explanation is hedging: in the case of

Figure 8. Historical PNL for the strategy using synthetic ETFs as factors from 1996–2007. The strategy does not produce
significant returns after 2004.

Figure 9. Historical PNL for the strategy using actual ETFs as factors, compared with the one using synthetic ETFs: 2002–2007.
Notice the strong out-performance by the strategy which uses actual ETFs.
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actual ETFs we were able to neutralize the portfolio
across each industry using ETFs as hedges, whereas the
back-testing with synthetic ETFs is beta-neutral with
respect to the SPY.

5.3. PCA with 15 eigenportfolios

The back-testing results for signals generated with 15
PCA factors are shown in figures 10 and 11 and table 6. In
the case of PCA factors, we trade the signals as explained
in the previous section. To ensure market neutrality, we
hedge daily with the S&P 500 tracker as in the case of
synthetic ETFs.

The first set of results, displayed in figure 10, shows the
progression of the equity in the two portfolios correspond-
ing to synthetic ETFs and PCA with 15 eigenportfolios.

The second set of results, displayed in figure 11,
compare the performances of PCA with 15 eigenportfolios
with the strategy with actual ETFs. We observe that the
15-PCA strategy out-performs the actual ETF strategy

since 2002. It is noteworthy that this is the case even if the
actual ETF strategy is hedged sector-by-sector but the
15-PCA strategy is hedged only at the level of SPY.

5.4. Using a variable number of PCA factors

We also back-tested strategies based on a variable number
of factors, with the number of factors chosen so as to
explain a given level of variance. In this approach, we
retain a certain number of eigenportfolios (factors) such
that the sum of the corresponding eigenvectors is equal to
a set percentage of the trace of the correlation matrix.

The number of eigenvalues (or eigenvectors) which
are needed to explain 55% of the total variance varies
in time. This variability is displayed in figures 12 and 13.
We also looked at other cutoffs and report similar results in
figure 15. The periods over which the number of
eigenvectors needed to explain a given level of variance is
low appear to be those when the risk-premium for equities
is relatively high. For instance, the latter parts of 2002 and

Figure 10. PNL corresponding 15 PCA factors, compared with synthetic ETFs from 1997–2007. The reason for starting in 1997 is
that we need one year of data to compute the initial correlation matrix. The PCA strategy produces superior results, particularly
after 2002.

Figure 11. Comparison of strategies with 15 PCA factors and using actual ETFs in the period 2002–2007. 15-PCA outperforms
significantly the strategy with actual ETFs.
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Table 6. Sharpe ratios for 15 PCA factors: 1997–2007. We start in 1997 due to the fact that we need one year’s worth of data to
compute the initial correlation matrix. The best performances, with Sharpe ratios above 2.0, were 2000, 2001, 2002 and 2004. Sectors

are beta-neutral with respect to the S&P 500 index.

HHH IYR IYT OIH RKH RTH SMH UTH XLE XLF XLI XLK XLP XLV XLY Porfolio

1997 1.1 0.8 1.1 (0.2) 1.6 (0.4) 0.7 0.4 0.5 1.2 (0.2) 2.0 (0.2) 1.2 (0.0) 1.4
1998 0.9 (0.4) (0.3) 0.5 0.2 0.6 1.0 (0.6) (0.3) 0.4 1.1 3.7 (0.9) 0.6 1.0 1.4
1999 (1.2) (0.5) 0.0 (0.1) (0.7) 0.5 1.9 (3.4) (0.8) 1.2 0.5 2.1 0.5 (0.6) 0.7 0.2
2000 (0.1) 1.0 1.3 (0.5) 2.0 0.5 1.0 1.1 (0.2) 0.7 0.6 (0.3) 1.1 (0.3) 1.1 2.2
2001 1.7 2.1 (0.5) (0.8) 2.6 0.2 (0.4) (0.3) (0.8) 0.7 2.8 2.4 (0.3) (0.2) 3.1 2.6
2002 1.2 1.4 0.2 1.9 2.4 0.9 (0.3) 0.4 1.0 1.5 2.0 1.9 1.6 (0.2) 2.5 3.4
2003 (0.6) 0.8 1.3 (0.3) 1.7 1.0 (1.4) (1.0) 0.5 0.5 0.1 1.7 (0.8) 1.2 1.7 0.9
2004 0.8 1.8 2.0 0.9 0.6 0.3 (0.4) 0.6 0.3 0.5 1.4 1.7 (0.8) 0.7 2.0 2.2
2005 (0.0) (0.8) 0.0 1.5 1.0 0.6 1.2 0.2 1.3 1.0 1.9 (0.3) 0.0 (0.1) (1.3) 1.2
2006 (0.0) 1.2 (1.1) 0.4 1.2 0.6 (0.6) 1.2 (0.3) (0.2) 2.0 1.7 (0.9) (1.0) 0.4 1.0
2007 0.3 (0.7) (0.1) 1.4 (1.8) (1.3) (0.9) 0.7 0.1 (1.5) 1.7 1.3 1.2 0.6 (1.6) (0.7)
Since inception 0.37 0.61 0.35 0.42 0.98 0.31 0.16 (0.07) 0.13 0.54 1.26 1.62 0.04 0.18 0.86 1.44

Figure 12. Number of significant eigenvectors needed to explain the variance of the correlation matrix at the 55% level, from 2002
to February 2008. The estimation window for the correlation matrix is 252 days. The boundary of the shaded region represents the
VIX CBOT Volatility Index (measured in percentage points).

Figure 13. Percentage of variance explained by the top 15 eigenvectors: 2002–February 2008. Notice the increase in the Summer
of 2007.
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2007, which correspond to the aftermath of the internet

bubble and the bursting of the subprime bubble, are

periods for which the variance is concentrated on a few

top eigenvectors/eigenvalues. In contrast, 2004–2006 is a

period where the variance is distributed across a much

larger set of modes. The equity risk premium, as repre-

sented by the VIX, reaches a historical low in early 2007.
Back-testing the strategy with 55% explained variance

shows that the strategy is comparable but slightly inferior

to taking 15 eigenvectors (see figure 14 and table 7).

The corresponding results are presented in figure 17 and
table 9. As before, we trade daily according to the s-score

levels and keep the portfolio beta-neutral with respect to

the S&P 500 index.
In the same vein, we studied the performances of other

strategies with a variable number of eigenportfolios
explaining different levels of variance. In table 8 and
figure 16, we display the performances of strategies using

45, 55 and 65% compared with the PCA strategies with
1 eigenportfolio and with 15 eigenportfolios.

Figure 14. Comparison of the PNLs for the fixed explained variance (55%) of PCA and the 15 PCA strategy: 2002–2007.
The performance of the 15 PCA strategy is slightly superior.

Figure 15. Time-evolution of number of PCA factors for different levels of explained variance: 2002–2007. The decay in the number
of factors is associated with the onset of the subprime crisis in the summer of 2007.

Table 7. Sharpe ratios for the fixed explained variance (55%) of PCA: 2003–2007. Sectors are neutral with respect to the S&P
500 index.

HHH IYR IYT OIH RKH RTH SMH UTH XLE XLF XLI XLK XLP XLV XLY Porfolio

2003 (1.3) 0.4 (0.8) (0.4) 1.4 1.4 (1.4) (1.3) (0.2) 0.3 (0.6) 2.5 (1.0) (0.2) 1.1 (0.1)
2004 1.2 0.9 0.6 0.4 0.6 (0.3) 0.5 0.4 1.1 1.2 2.1 2.4 (0.3) 0.7 2.4 2.6
2005 (0.3) (1.4) 1.1 1.6 (0.6) (0.3) 1.3 0.2 1.1 1.1 1.6 0.3 (0.6) 0.5 (0.8) 0.6
2006 0.0 0.8 (0.9) 0.2 0.9 0.4 (0.3) 1.2 (0.4) (0.8) 1.3 0.5 (0.5) (0.1) 1.2 0.9
2007 1.8 (0.9) (0.3) 0.6 (2.0) (0.3) 0.5 1.0 0.3 (1.7) 2.6 0.8 0.2 0.3 (1.0) (0.4)
Since inception 0.3 (0.0) (0.1) 0.5 0.1 0.2 0.1 0.3 0.4 (0.0) 1.4 1.3 (0.4) 0.2 0.6 0.7
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Figure 16. PNL for different variance truncation levels: 2002–2007.

Figure 17. Comparison of strategies corresponding to signals generated using trading time versus using calendar time, using actual
ETFs as factors: 2002–2007.

Table 8. Sharpe ratios for variable PCA strategies: 2002–2007.

1 Eigenportfolios 15 Eigenportfolios 45% Exp Variance 55% Exp Variance 65% Exp Variance

2003 �0.7 0.9 �0.5 �0.1 0.4
2004 1.7 2.2 1.7 2.6 1.3
2005 0.8 1.2 1.3 0.6 1.0
2006 1.8 1.0 1.3 0.9 0.3
2007 0.0 �0.7 �0.7 �0.4 �0.9
Since Inception 0.7 0.9 0.6 0.7 0.4

Table 9. Sharpe ratios for signals in trading time using actual ETFs as factors: 2002–2007. Sector portfolios are beta-neutral with
respect to the corresponding ETF.

HHH IYR IYT OIH RKH RTH SMH UTH XLE XLF XLI XLK XLP XLV XLY Porfoto

2003 0.3 1.4 (1.4) 0.1 (0.1) 0.9 (1.4) 0.1 0.0 (0.8) 1.1 2.1 (0.1) 0.0 1.0 0.9
2004 0.9 2.4 0.2 0.9 1.7 1.8 0.1 0.2 1.8 1.4 1.0 1.6 0.4 0.5 0.4 3.1
2005 0.1 0.1 1.3 0.6 (0.2) (0.2) 0.8 0.4 1.2 1.5 0.7 2.6 (1.4) 2.1 (0.2) 1.6
2006 2.4 1.6 (1.5) 0.3 1.1 (0.6) (0.5) 1.3 0.7 0.4 1.6 1.1 (0.5) (0.0) 1.9 1.5
2007 1.7 (2.4) 0.4 0.8 (1.0) (0.4) 0.4 0.7 0.7 (1.2) 1.9 2.0 0.3 1.8 0.7 0.4
Since 2003 1.08 0.61 (0.21) 0.52 0.30 0.20 (0.12) 0.54 0.88 0.28 1.26 1.91 (0.28) 0.87 0.76 1.51
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The conclusion is that 55% PCA performs best among

the three strategies and underperforms slightly the 15
PCA strategy. We also observe that taking a high cutoff
such as 75% of explained variance leads invariably to
steady losses, probably due to the fact that transaction

costs dominate the small residual variance which remains
in the system after ‘defactoring’. Using too many factors
lead to ‘noise trading’!

On the opposite side of the spectrum, using only one
eigenportfolio, as in the Capital Asset PricingModel, gives

rise to lower speeds of mean-reversion, higher residual
volatilities and worst Sharpe ratios.

6. Taking trading volume into account

In this section, we incorporate volume information to the
mean-reversion signals. Let Vt represent the cumulative

share volume transacted until time t starting from an
arbitrary reference time t0 (say, the date at which the
stock was first issued). This is an increasing function
which can be viewed as a sum of daily trading volumes

and approximated as an integral:

Vt ¼
X

�Vk 	

Z t

t0

_Vs ds:

Historical prices can be viewed on a uniform ‘time grid’ or

on a uniform ‘volume grid’ (i.e. the price evolution each
time one share is traded). If we denote the latter prices by
PV, we have

Stþ�t � St ¼ PVðtþ�tÞ � PVðtÞ

¼
PVðtþ�tÞ � PVðtÞ

Vðtþ�tÞ � VðtÞ
Vðtþ�tÞ � VðtÞ½ 
: ð19Þ

Thus, the price change per share traded over the period of
interest is

PVðtþ�tÞ � PVðtÞ

Vðtþ�tÞ � VðtÞ
¼

Stþ�t � St

Vðtþ�tÞ � VðtÞ
:

This suggests that, instead of the classical daily returns,
we use the modified returns

Rt ¼
Stþ�t � St

St

h�V i

Vðtþ�tÞ � VðtÞ

¼ Rt �
h�V i

Vðtþ�tÞ � VðtÞ

	 

, ð20Þ

where h�V i indicates the average, or typical, daily trading
volume calculated over a given trailing window.
Measuring mean-reversion in trading time is equivalent
to ‘rescaling’ stock returns as in (20).

The modified returns Rt are equal to the classical
returns if the daily trading volume is typical. If the trading
volume is low, the factor on the right-hand side of the last
equation is larger than unity and Rt 4Rt. Conversely, if
volume is high then Rt 5Rt. The concrete effect of the
trading-time modification is that mean-reversion strate-
gies are sensitive to how much trading was done
immediately before the signal was triggered. If the stock
rallies on high volume, an open-to-short signal using
classical returns may be triggered. However, if the volume
is sufficiently large, then the modified return is much
smaller so the residual will not necessarily indicate a
shorting signal. Similarly, buying stocks that drop on high
volume is discouraged by the trading-time approach.

We back-tested the ETF and PCA strategies using the
trading-time approach. The window for calculating the
trading volume was taken to be ten trading days, a choice
dictated by the fact that the measured volume should be
over a period smaller than the estimation window for the
residuals but long enough to average spikes.y

We found that the technique increases the PNL and
the Sharpe ratios unequivocally for strategies with
ETF-generated signals (figure 17 and table 9). For
PCA-based strategies, a trading-time framework does
not seem to produce a significant improvement ( figure 18
and table 10). Finally, we find that the ETF strategy using
trading time is comparable in performance to the
15-PCA/55% PCA strategies until 2006 and performs
slightly better after that, if we exclude the August 2007
drawdown (figure 19 and table 10).

7. A closer look at 2007

It is well-known that 2007 was a very challenging year for
quantitative hedge funds – see Khandani and Lo (2007),
Barr (2007), the Associated Press (2007) and Rusli (2007).
After a mediocre performance in the first half of the year,
statistical arbitrage strategies experienced a large draw-
down followed by a partial recovery in the second week
of August 2007. Unfortunately for many managers, the
size of the drawdown was so large that many had to
de-leverage their portfolios and did not recover to pre-
August levels (see the above references for details).

Table 10. Sharpe ratios for signals in trading time using 15 PCAs as factors: 2002–2007.

HHH IYR IYT OIH RKH RTH SMH UTH XLE XLF XLI XLK XLP XLV XLY Porfolio

(2003) 0.9 (0.1) (0.0) 0.6 0.4 0.6 (1.7) (1.3) (0.0) 0.9 0.3 1.7 (0.5) (0.4) 1.5 0.2
(2004) 1.5 1.8 0.6 0.9 0.9 0.8 (0.5) 0.2 1.7 1.9 1.1 1.4 0.7 0.1 1.4 2.4
(2005) (1.1) (0.8) 0.8 1.0 0.1 1.9 0.4 0.6 1.4 0.8 1.4 1.5 (1.7) 1.7 (0.6) 1.2
(2006) 0.3 1.2 (0.8) 1.1 0.9 (0.9) (0.1) 0.8 (0.5) 0.2 0.4 0.0 (0.1) 0.3 0.3 0.6
(2007) (0.2) (0.7) (0.6) 1.0 (1.1) (1.9) 0.2 0.8 0.9 (1.7) 2.6 0.9 0.4 0.9 (1.4) (0.5)

0.29 0.27 (0.00) 0.93 0.22 0.13 (0.35) 0.21 0.69 0.42 1.16 1.10 (0.23) 0.50 0.24 0.80

yThis value was chosen as an educated first guess. We did not optimize the trading-time window length in this study.
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Our back-testing results are consistent with the real-world
events of 2007 and also show a strong drawdown in
August 2007 (see below). This drawdown was first
reproduced in back-testing by Khandani and Lo (2007)
using their classical contrarian strategy.

We carefully analysed the performance for all the
strategies in this paper in 2007, with the exception of
synthetic ETFs (which are known to underperform the
others). Figure 20 displays the results graphically.

First, we found that performance of all strategies was
flat or slightly negative in the first part of the year.
In early August, we found that all the mean-reversion
strategies experienced a large, sudden drawdown fol-
lowed by a recovery in about 10 days. In certain cases,
our strategies tracked almost identically the Khandani–
Lo (2007) simulation after adjusting for leverage (KL
used 4þ 4 in 2007 leverage whereas we use 2þ 2 in this
paper). PCA-based strategies showed more resilience
during the liquidity event, with a drawdown of 5%

as opposed to 10% for the ETF-based strategies
(see figure 20).

Khandani and Lo (2007) suggest that the events of 2007
could have been due to a liquidity shock caused by funds
unwinding their positions. As we have seen, market-
neutral statistical arbitrage strategies result in leveraged
portfolios with hundreds of long and short positions.
While each position is small and has probably small
impact, the aggregate effect of exiting simultaneously
hundreds of positions may have produced the spike
shown in figure 21.

A closer look at the different sectors shows that the
Technology and Consumer Discretionary sectors were
strongly affected by the shock – and more so in terms of
price movements than Financials and Real Estate; see
figure 22, which gives a breakdown of the performance of
the different industry sectors in August 2007. This
apparently paradoxical result – whereby sectors that are
uncorrelated with Financials experience large volatility – is

Figure 18. Comparison of signals in trading time versus actual time using 15 PCAs as factors: 2002–2007.

Figure 19. Comparison of ETF and PCA strategies using trading time. The ETF strategy in trading time clearly outperforms the
PCA strategy.
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consistent with the unwinding theory of Khandani and Lo.
In fact, it shows a sudden ‘divergence’ of the mean-
reversion strategy in sectors unrelated to financials and
real estate.

8. Conclusions

We have presented a systematic approach for construct-
ing market-neutral portfolio strategies based on mean-
reversion. The approach is based on decomposing stock
returns into systematic and idiosyncratic components.
This extraction of ‘residuals’ is done using different
definitions of risk-factors: (i) ETFs as proxies for industry
factors or (ii) a PCA-based approach where we extract
factors from eigenvectors of the empirical correlation
matrix of returns.

We compared extensively the ETF and PCA methods.
In the ETF method, we used 15 liquid ETFs to
representing the systematic price fluctuations, and we

de-trended stock returns by regressing each of them on the
associated ETF returns.

With this definition of systematic–idiosyncratic decom-
position, the systematic component of stock returns
explains between 40 and 60% of the variance. This
suggests, on the PCA side, that the number of factors
needed to explain stock returns should be equal to the
number of eigenvalues needed to explain approximately
50% of the variance of the empirical correlation matrix.
In practice, we found this number to vary across time,
and to lie somewhere between 10 and 30 factors. We also
observe that this number varies inversely to the value of
the VIX Option volatility index, suggesting more factors
are needed to explain stock returns when volatility is low,
and less in times of crisis, or large cross-sectional
volatility.

A word on hedging. For the trading strategies based
on actual ETFs, we hedged the portfolio daily, on each
sector, with ETFs. Hence, the resulting portfolio is beta-
neutral per sector. In the case of strategies generated using

Figure 20. Zoom on 2007. Performance of strategies with ETF factors with trading time, ETF factor with calendar time and
15-PCA. All strategies exhibit a similar drawdown in August 2007, like the contrarian strategy of Khandani and Lo (2007).

Figure 21. Comparison of the ETF strategy in trading time with Khandani and Lo during August 2007. The leverage is 2þ 2 for
both strategies.
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‘synthetic’ ETFs or using the PCA factors, we did not
enforce beta-neutrality per sector. Instead we traded all
the signals and hedged the overall portfolio beta using
SPY, the S&P 500 tracker. The reason for this is that we
wanted to evaluate the performance of the synthetic ETF
and the PCA strategies beginning in the mid-1990s, when
there were few sector ETFs. (Hedging with ETFs was not
possible then, with the exception of SPY, which was
available also during that period.y)

We back-tested the strategies using data from 1996 to
2007 for synthetic ETFs and PCA. Back-testing with
actual ETFs was only possible since 2002, after the sector
ETFs were created. We then compared all strategies
over the relevant time periods, and particularly after
2002, when ETFs were available. The best performing
strategies were the ETF strategy in trading time and the
15-PCA strategy. A PCA strategy with a variable number
of factors explaining 55% of the variance also performed
relatively well.

Estimation of signals in trading time is equivalent, for
EOD trading, to weighting returns inversely to the daily
traded volume. This additional feature, which incorpo-
rates trading volume into our signals, appears to benefit
particularly the ETF strategy and to make it competitive
with PCA. Given its simplicity, this means that the ETF-
based in trading-time strategy might merit further
attention and refinements.

We also noted that, in general, the performance of
mean-reversion strategies appears to benefit from market
conditions in which the number of explanatory factors
is relatively small. That is, mean-reversion statistical
arbitrage works better when we can explain 50% of the
variance with a relatively small number of eigenvalues/
eigenvectors. The reason for this is that if the ‘true’

number of factors is very large (425) then using 15 factors
will not be enough to ‘defactor the returns’, so residuals
‘contain’ market information that the model is not able
to detect. If, on the other hand, we use a large number of
factors, the corresponding residuals have small variance,
and thus the opportunity of making money, especially
in the presence of transaction costs, is diminished.
We conjecture therefore that markets having many
stocks (i.e. investment opportunities), and yet are in
conditions in which they are driven by a small number of
explanatory factors, may be the most propitious for this
strategy. This conjecture might be useful for performance
evaluation of this class of strategies and to determine
when they may provide good investment opportunities,
although more studies, particularly after 2007, may be
required to ascertain this.

Finally, we reproduced the results of Khandani and
Lo (2007) and thus place our strategies in the same broad
universality class as the contrarian strategies of their
paper. Interestingly enough, an analysis of PNL at the
sector level shows that the spike of August 2007 was more
pronounced in sectors such as Technology and Consumer
Discretionary than in Financials and Real Estate,
confirming the plausibility of the ‘unwinding theory’ of
Khandani and Lo.
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Appendix A: Estimation of the residual process

We describe our approach for estimating co-integration
residuals as Ornstein–Uhlenbeck processes and for
the calculation of s-scores. We do not claim that this
is the most sophisticated or efficient method for esti-
mating the price processes, but simply one that can be
readily used (and almost certainly improved) by
practitioners.

For simplicity, we describe the estimation of the OU
parameters for the case of ETF regressions, the case of
PCA being similar. The first step is to estimate the
regression

RS
n ¼ �0 þ �R

I
n þ �n, n ¼ 1, 2, . . . , 60

relating stock returns to the corresponding ETF returns.

Here we assume that returns are chronologically ordered,

and RS
60 is the last observed return, based on the variation

of the closing prices from yesterday to today. Recalling

the model (10), we set

� ¼ �0=�t ¼ �0 � 252:

Next, we define auxiliary process

Xk ¼
Xk
j¼1

�j, k ¼ 1, 2, . . . , 60,

which can viewed as a discrete version of X(t), the OU

process that we are estimating. Notice that the regression

‘forces’ the residuals to have mean zero, so we have

X60 ¼ 0:

The vanishing of X60 is an artifact of the regression, due

to the fact that the betas and the residuals are estimated

using the same sample.y
The estimation of the OU parameters is done by solving

the 1-lag regression model

Xnþ1 ¼ aþ bXn þ �nþ1, n ¼ 1, . . . , 59:

According to (13), we have

a ¼ m 1� e�	�t
� �

b ¼ e�	�t

Varianceð�Þ ¼ �2
1� e�2	�t

2	

whence

	 ¼ � logðbÞ � 252

m ¼
a

1� b

� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varianceð�Þ � 2	

1� b2

r

�eq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varianceð�Þ

1� b2

r
: ðA1Þ

Fast mean-reversion (compared to the 60-day estimation

window) requires that 	4252/30, which corresponds to

mean-reversion times of the order of 1.5 months at most.

In this case, 05b50.9672 and the above formulae

make sense. If b is too close to 1, the mean-reversion

time is too long and the model is rejected for the stock

under consideration.
Notice that the s-score, which is defined theoretically as

s ¼
XðtÞ �m

�eq
,

yThis does not have to be the case. For instance, we can use 90 days to estimate the regression and 60 days to estimate the process.
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becomes, since X(t)¼X60¼ 0,

s ¼
�m

�eq
¼

�a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2
p

ð1� bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varianceð�Þ

p :

The last caveat is that we found that centred means work
better, so we set

m ¼
a

1� b
�

a

1� b

D E
,

where angle brackets denote averaging over different

stocks. The s-score is therefore

s ¼
�m

�eq
¼

�a�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2
p

ð1� bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varianceð�Þ

p þ
a

1� b

D E

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

Varianceð�Þ

s
: ðA2Þ
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